Distinct sites of origin of oligodendrocytes and somatic motoneurons in the chick spinal cord: oligodendrocytes arise from Nkx2.2-expressing progenitors by a Shh-dependent mechanism.

نویسندگان

  • C Soula
  • C Danesin
  • P Kan
  • M Grob
  • C Poncet
  • P Cochard
چکیده

In the vertebrate spinal cord, oligodendrocytes arise from the ventral part of the neuroepithelium, a region also known to generate somatic motoneurons. The emergence of oligodendrocytes, like that of motoneurons, depends on an inductive signal mediated by Sonic hedgehog. We have defined the precise timing of oligodendrocyte progenitor specification in the cervico-brachial spinal cord of the chick embryo. We show that ventral neuroepithelial explants, isolated at various development stages, are unable to generate oligodendrocytes in culture until E5 but become able to do so in an autonomous way from E5.5. This indicates that the induction of oligodendrocyte precursors is a late event that occurs between E5 and E5.5, precisely at the time when the ventral neuroepithelium stops producing somatic motoneurons. Analysis of the spatial restriction of oligodendrocyte progenitors, evidenced by their expression of O4 or PDGFR(&agr;), indicate that they always lie within the most ventral Nkx2.2-expressing domain of the neuroepithelium, and not in the adjacent domain characterized by Pax6 expression from which somatic motoneurons emerge. We then confirm that Shh is necessary between E5 and E5.5 to specify oligodendrocyte precursors but is no longer required beyond this stage to maintain ongoing oligodendrocyte production. Furthermore, Shh is sufficient to induce oligodendrocyte formation from ventral neuroepithelial explants dissected at E5. Newly induced oligodendrocytes expressed Nkx2.2 but not Pax6, correlating with the in vivo observation. Altogether, our results show that, in the chick spinal cord, oligodendrocytes originate from Nkx2.2-expressing progenitors.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nkx2.2+ Progenitors Generate Somatic Motoneurons in the Chick Spinal Cord

Heterogeneous classes of neurons are present in the spinal cord and are essential for its function. Expression patterns of transcription factors in neural progenitor cells determine neuron subtypes during development. Nkx2.2 is expressed in the progenitor cell pool located just ventrally to the Olig2-positive pool and is indispensable for V3 interneuron generation in the spinal cord and also fo...

متن کامل

Ventral neural progenitors switch toward an oligodendroglial fate in response to increased Sonic hedgehog (Shh) activity: involvement of Sulfatase 1 in modulating Shh signaling in the ventral spinal cord.

In the embryonic chick ventral spinal cord, the initial emergence of oligodendrocytes is a relatively late event that depends on prolonged Sonic hedgehog (Shh) signaling. In this report, we show that specification of oligodendrocyte precursors (OLPs) from ventral Nkx2.2-expressing neural progenitors occurs precisely when these progenitors stop generating neurons, indicating that the mechanism o...

متن کامل

Sonic hedgehog-dependent emergence of oligodendrocytes in the telencephalon: evidence for a source of oligodendrocytes in the olfactory bulb that is independent of PDGFRalpha signaling.

Most studies on the origin of oligodendrocyte lineage have been performed in the spinal cord. By contrast, molecular mechanisms that regulate the appearance of the oligodendroglial lineage in the brain have not yet attracted much attention. We provide evidence for three distinct sources of oligodendrocytes in the mouse telencephalon. In addition to two subpallial ventricular foci, the anterior ...

متن کامل

A subset of oligodendrocytes generated from radial glia in the dorsal spinal cord.

Many oligodendrocytes in the spinal cord are derived from a region of the ventral ventricular zone (VZ) that also gives rise to motoneurons. Cell fate specification in this region depends on sonic hedgehog (Shh) from the notochord and floor plate. There have been suggestions of an additional source(s) of oligodendrocytes in the dorsal spinal cord. We revisited this idea by Cre-lox fate-mapping ...

متن کامل

The Sox9 transcription factor determines glial fate choice in the developing spinal cord.

The mechanism that causes neural stem cells in the central nervous system to switch from neurogenesis to gliogenesis is poorly understood. Here we analyzed spinal cord development of mice in which the transcription factor Sox9 was specifically ablated from neural stem cells by the CRE/loxP recombination system. These mice exhibit defects in the specification of oligodendrocytes and astrocytes, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Development

دوره 128 8  شماره 

صفحات  -

تاریخ انتشار 2001